Presenting science

When thinking about the social roles of scientists, it is helpful when they come out and speak on the subject directly. As such, an article in the BBC headlines feed for today is interesting. Basically, it is about some scientists who feel that it is both misleading and a tactical error to play up the catastrophic possibilities of climate change. One, Professor Paul Hardaker from the Royal Meteorological Society, argues:

“I think we do have to be careful as scientists not to overstate the case because it does damage the credibility of the many other things that we have greater certainty about,” he said.

“We have to stick to what the science is telling us; and I don’t think making that sound more sensational, or more sexy, because it gets us more newspaper columns, is the right thing for us to be doing.

“We have to let the science argument win out.”

The first thing to note about this is the implicit position that it is up to scientists to actively tune what they say to the audience they are addressing. This is done for the explicit reason of retaining “credibility” and thus influence. What is suggested, furthermore, is that scientists basically know what is to be done (even if that is more research, for the moment) and that they should be saying the right things in public to keep things on the right track.

Of course, science cannot tell us how much risk we want to bear. While runaway climate change – driven by methane release, for example – may not be a probable outcome, the very fact that it is possible may be sufficient to justify expensive preventative measures. Science can likewise tell us what areas and groups are most likely to be affected, but hardly requires one or another course of action in response. Bjorn Lomborg has famously argued that general increases in foreign aid are the best thing the developed world can do for the developing world, so that the latter will be richer by the time the major effects of climate change manifest themselves.

The position of scientists is a somewhat paradoxical one. In the first place, their influence is founded upon their supposedly superior ability to access and understand the world. Their credibility relies upon being relatively neutral reporters of fact. When they begin dealing with data at the kind of second-order level embodied in the above quotation, they are seeking to increase their influence in a way that can only diminish the original source of their legitimacy. In an area like the environment this is inevitable, but it does render invalid the idea that science, in and of itself, can guide us.

Solar power and climate change

Cloth pattern, in sumi-e

This is my last full day in Wales. Hopefully, we will have seen a bit of sunshine so far. One of the best things about climbing mountains is the view from the top. Speaking on illumination…

Intuitively, I have long had the sense that solar power makes a great deal of sense as an alternative power source. There are no greenhouse gas emissions, there is no need to operate any massive industrial processes, other than manufacturing panels, and the technology only needs to become incrementally better to be cost-effective against fossil fuels. This map of solar energy, which was used in C.G. Rapley’s presentation, shows the size of solar collectors of the present efficiency that would be needed to satisfy our present electrical needs.

Cost is the first big problem with solar, though it may be a temporary one. According to The Economist:

Decades of research have improved the efficiency of silicon-based solar cells from 6% to an average of 15% today, whereas improvements in manufacturing have reduced the price of modules from about $200 per watt in the 1950s to $2.70 in 2004. Within three to eight years, many in the industry expect the price of solar power to be cost-competitive with electricity from the grid.

Full article (subscription required)

The other big one is load balancing. Because solar output isn’t constant, there is a need to either store power or redistribute it across long distances. Storage across the daily light-dark cycle is of inescapable importance, and the means for doing so are not terribly clear. Batteries are costly and bulky, as well as of a limited lifetime. Solar energy could be used to electrolyze water into hydrogen and oxygen, which could then be fed to fuel cells, but I expect that would increase costs a lot, while reducing efficiency. As with transportation, I think energy storage is a bigger long term problem than energy generation.

Of course, one technology is unlikely to be the solution, in and of itself. There are lots of places where hydro, wind, and geothermal power make sense. There may even be situations where biodiesel is an appropriate choice, despite the inefficiencies of production.

[Update: 3 May 2007] Antonia sent me an interesting BBC article about a solar thermal plant near Seville.

C.G. Rapley on climate change

The Earthwatch Institute lecture tonight was an educational experience, for a whole slew of reasons. I learned a lot about the organization, the talk itself was very well done, and I spoke with some unusually interesting people.

Earthwatch is a slick organization: corporate partnerships, wine receptions before and after talks given at the business school, and a 153-page full-colour glossy book distributed in a ‘treat bag’ to each attendee at the end. This all gives a really interesting glimpse into the world of relationships between private actors. These people aren’t lobbying the state, they are engaging with the scientific and business communities, along with individuals inclined towards certain concerns. Anyone who thinks that regulating carbon emissions is a matter for the leftist fringe should probably meet these people. In the ecosystem of contemporary international actors, they are an unusual species, worthy of further study.

The talk was given by Professor C.G. Rapley, the Director of the British Antarctic Survey. He was well chosen: articulate, funny, and capable of presenting technical material in an engaging and highly effective way. That this is an outset of an international polar year made the choice particularly timely. My transcript of the talk is available on the wiki.

Perhaps the most unusual thing he said – his greatest deviation from the Stern-Gore Axis – was the suggestion that we could (and should) jump-start the demographic transition. This is is transition from high birth and death rates, to massively lowered death rates (due to medicine, agriculture, etc), through massive population growth to the eventual lowering of birth rates and stabilization of the population overall. Rapley alleged that 76m unwanted pregnancies occur each year, worldwide. Giving these people effective contraception and social orders in which they can use it could accomplish a number of good things: he focused on the reduction of future emissions and a reduced push towards urbanization. Of course, the politics of birth control are fiendishly complex, and the possibilities for harm considerable. That said, a world where women have more control over how many children they have would, all other things being equal, be a much better one. Rapley seems to have written more on population for the BBC.

My thanks to all those – both employees of Earthwatch and fellow guests – with whom I spoke at the receptions. Altogether, this evening has reinforced my conception that climate change is the single greatest challenge facing the world today. It has also bolstered my hope that it is something that we can overcome.

No Mercator projection

Grabbed from Metafilter, this page of maps distorted to show relative rates of things like military spending is quite interesting. Unsurprisingly, the map of war and death is especially grotesque.

Some higher resolution versions are over at Worldmapper: by total population, landmine casualties, and wealth (per capita).

Looking at these, one is immediately struck by how heterogeneous the world is. Of course, we all knew that before, but seeing the information in a new way can change one’s perception of it quite a bit. While there is the danger of such data being misleading, I would say it counters the greater danger of extrapolating from personal experience. Aggregated statistics, while not perfect, are a lot better than on-the-fly human intuitions, when it comes to assessing massive problems quite beyond the scope of anyone’s personal experience.

Of group sizes and word counts

Lincoln College, Oxford

According to Malcolm Gladwell, something fundamental happens to human organizations once they grow beyond 150 people. This is called Dunbar’s Number. If you take the size of a primate’s neocortex, relative to the rest of its brain, you will find a close correlation to the expected maximum group size for that species.1 This number corresponds to village sizes, as seen around the world, to the sizes of effective military units, and to the size at which Hutterite communities split up. It seems that, above this size, organizations require complex hierarchies, rules, regulations, and formal measures to operate efficiently.

I think that something very similar happens to pieces of academic writing, once they get beyond about 5,000 words. That is the point where my ability to hold the entire thing at once in my mind fails, often leading to duplication and confusion. Even with two levels of sub-divisions, things simply become unmanageable at that point and I go from feeling total control over a piece of writing (2,500 words) to feeling that it has sprawled a bit (3-4,000 words) to feeling rather daunted by the whole thing. With my revised second chapter at 5,700 words and three to seven hours left prior to submission, I am certainly feeling as though things have grown beyond the bounds of good sense and comprehensibility.

[1] Gladwell, Malcolm. The Tipping Point: How Little Things Can Make a Big Difference. Back Bay Books; New York, 2000. p.179

A disappointing presentation

If it had been an intellectual argument, Professor Timothy Luke‘s presentation on climate change tonight might have been subject to some strong criticism. As it was, it was essentially a smug collection of sniping ad hominem arguments directed at Al Gore, Nicholas Stern, and the concept of liberal environmentalism generally. He made clear that he holds these people in contempt – using a mocking tone of voice while quoting their work – but never really explained why, beyond some vague suggestions that ‘ecopopulism’ would be superior, and how the powerful and the plutocratic are aligned to remain in control. The idea that grassroots organizations will somehow directly access environmental science, then manifest their new preferences through the popular alteration of the political dialog seems rather unlikely. While you can certainly engage in argument with knowledge brokers like Nicholas Stern and Al Gore (starting that argument is much of the point of their work), simply attacking them for being part of existing governmental and economic systems carries little water.

One can hardly expect leaders of politics and industry to abandon their power and the standard economic system. That is especially true when you don’t seem to have any well-formed idea about what the alternative might be. By nor following up his scorn with substance, Professor Luke left us with little value for our time.

Chapter two, second version

I have been thinking about how to incorporate the general ideas from this post into the revised and clarified version of my second chapter, upon which I am now working. It seems that there are three axes across which environmental problems can be assessed: predictability, intentionality, and desirability. Of these, the third is most likely to have different values for different actors.

The mine tailings example is certainly intentional, for it is an inescapable and obvious product of mining activity. The predictability score depends on the status of knowledge about the health and ecological consequences of particular tailings at the time when they were released into the environment. Here, there is also a discussion to be had about the extent to which an actor engaged in something that could well have ecological or health consequences is morally obligated to investigate what those may be. There are also questions about whether private actors are merely obliged to follow the law, or whether they need to act upon moral considerations with which the law has not explicitly saddled them.

On the matter of desirability, the range includes possibilities of utility gain, indifference, and loss. The mining company probably has an indifferent or unfavourable view of tailings: if they could be avoided for moderate cost, they would be. This is certainly true now that the consequences of certain tailings are known and legal and moral obligations on the part of such companies are fairly well entrenched. A more interesting possibility is environmental change that increases the utility of some, while diminishing that of others. This could happen both with intentional acts (say, building a dam) or unintentional ones (the unintended introduction of a species into a new area).

In any event, the new plan is to boil the introductory portion of the chapter down until it is only about 1000 words long. Then, I will write 2500 words each on the case studies, and 1000 words in concluding comments. Most of the existing commentary will be migrated into the case study sections. The best way to do all of this is probably to re-write from scratch, then import and vital elements and citations from the old version. A similar chapter model can be adopted for the third and fourth chapters and, since most of the research being done covers all three, they should prove reasonably easy to write once it is done.

[Update: 3 March 2007] I now feel confident that the version of the chapter to be submitted tomorrow, four days late, will be enormously superior to what could have been submitted on time. This owes much to the new books I got at the Geography and Environment Library. Those with restricted wiki access can have a look at the emerging draft.

Filling the gaps in chapter two

St Anne’s College, Oxford

The conclusion from working on my second chapter is that I have read too much general background material and not enough on my case studies. I am fairly well covered on POPs, since I have done research on them before. Naturally, adding a few more sources would be nice, though there are not really a great many out there. I am also quite well covered on current events relating to climate change, because there has been such a raft of coverage and discussion. While my intention has never been to write a blow-by-blow account of either (how could I possibly do so in 30,000 words?), it is certainly necessary to have a comprehensive understanding of the history, before any important and valid analysis can be done.

As such, I need to fill in my knowledge on recent developments pertaining to POPs, which should not be hugely difficult. Then, I need to shore up my section on the early history of the climate change debate. Aside from the mandatory OUSSG dinner and talk tonight, I suspect this will fill the next 32 hours. Naturally, I am interpreting my promise to Dr. Hurrell of having a second chapter dropped off at Nuffield by Wednesday as having that chapter dropped off, by my own hand, in time for him to read it on Thursday morning.

Framing, selection, and presentation issues

Harris Manchester College, Oxford

One of the major issues that arises when examining the connections between science and policy are the ways information is framed. You can say that the rate of skin cancer caused by a particular phenomenon has increased from one in ten million cases to one in a million cases. You can say that the rate has increased tenfold, or that it has gone up by 1000%. Finally, you could say that an individual’s chances of getting skin cancer from this source have gone up from one tiny figure to a larger, but still tiny seeming, figure. People seem to perceive the risks involved in each presentation differently, and people pushing for one policy or another can manipulate that. This can be especially true when the situations being described are of not comparably rare: having your chances of being killed through domestic violence reduced 1% is a much greater absolute reduction than having your chances of dying in a terrorist attack reduced by 90%.

Graphing

When talking about presentation of information, graphs are an important case. Normally, they are a great boon to understanding. A row of figures means very little to most people, but a graph provides a wealth of comprehensible information. You can see if there is a trend, what direction it is in, and approximately how strong it is. The right sort of graph, properly presented, can immediately illuminate the meaning of a dataset. Likewise, it can provide a compelling argument: at least, between those who disagree more about what is going on than how it would be appropriate to respond to different situations.

People see patterns intuitively, though sometimes they see order in chaos (the man on the moon, images of the Virgin Mary in cheese sandwiches). Even better, they have an automatic grasp of calculus. People who couldn’t tell you a thing about concavity and the second derivative can immediately see when a slope is upwards and growing ever steeper: likewise, one where something is increasing or decreasing, but at a decreasing rate. They can see what trends will level off, and which ones will explode off the scale. My post on global warming damage curves illustrates this.

Naturally, it is possible to use graphs in a manipulative way. You can tweak the scale, use a broken scale, or use a logarithmic scale without making clear what that means. You can position pie charts so that one part or another is emphasized, as well as abuse colour and three dimensional effects. That said, the advantages of graphs clearly outweigh the risks.

It is interesting to note how central a role one graph seems to have played in the debate about CFCs and ozone: the one of the concentration of chlorine in the stratosphere. Since that is what CFCs break down to produce, and that is what causes the breakdown of ozone, the concentration is clearly important. The graph clearly showing that concentrations would continue to rise, even under the original Montreal Protocol, seems to have had a big impact on the two rounds of further tightening. Perhaps the graph used so prominently in Al Gore in An Inconvenient Truth (the trends on display literally dwarfing him) will eventually have a similar effect.

Stats in recent personal experience

My six-month old Etymotic ER6i headphones are being returned to manufacturer tomorrow, because of the problems with the connector I reported earlier. Really not something you expect for such a premium product, but I suppose there are always going to be some defects that arise in a manufacturing process. Of course, being without good noise isolating headphones for the time it will take them to be shipped to the US, repaired or replaced, and returned means that reading in coffee shops is not a possibility. Their advantage over libraries only exists when you are capable of excluding the great majority of outside noise and of drowning the rest in suitable music.

Speaking of trends, I do wonder why so many of my electronics seem to run into problems. I think this is due to a host of selection effects. I (a) have more electronics than most people (b) use them a great deal (c) know how they are meant to work (d) know what sort of warranties they have and for how long (e) treat them so carefully that manufacturers can never claim they were abused (f) maintain a willingness to return defective products, as many times as is necessary and possible under the warranty. Given all that, it is not surprising that my own experience with electronics failing and being replaced under warranty is a lot greater than what you might estimate the background rate of such activity to be.

Two other considerations are also relevant. It is cheaper for manufacturers to rely upon consumers to test whether a particular item is defective, especially since some consumers will lose the item, abuse it, or simply not bother to return it even if defective. Secondly, it is almost always cheaper to simply replace consumer electronics to fix them, because of the economies of scale involved in either activity. From one perspective, it seems wasteful. From another, it seems the more frugal option. A bit of a paradox, really.

[14 March 2007] My replacement Etymotic headphones arrived today. Reading in coffee shops is possible again, and none too soon.

The identification of environmental problems

The identification of an environmental ‘problem’ is not a single crystalline moment of transition, from ignorance to understanding. Rather, it is ambiguous, contingent, and dependent upon the roles and modes of thinking of the actors involved, and values that inform judgments. Rather like Thomas Kuhn’s example about the discovery of oxygen (with different people accessing different aspects of the element’s nature, and understanding it in different contexts), the emergence of what is perceived as a new environmental problem occurs at the confluence of facts, roles, and existing understandings. While one or more causal connections ultimately form the core of how an environmental problem is understood, they are given comprehensibility and salience as the result of factors that are not strictly rational. From the perspective of global environmental politics and international relations, environmental problems are best understood as complexes of facts and judgments: human understandings that are subjective and dynamic, despite how elements of their composition are firmly grounded in the empirical realities of the world.

POPs and climate change

Consider first the case of persistent organic pollutants (POPs). The toxicity of chemicals like dioxins was known well before any of the key events that led to the Stockholm Convention. At the time, the problem of POPs was largely understood as one of local contamination by direct application or short distance dispersal. It took the combination of the observation of these chemicals in an unexpected place, the development of an explanation for how this had transpired, and a set of moral judgments about acceptable and unacceptable human conduct to form the present characterization of the problem. That understanding in turn forms the basis for political action, the generation of international law, and the investigation of techniques and technologies for mitigating the problem as now understood. Even now, the specific chemicals chosen and the particular individuals whose interests are best represented are partly the product of political and bureaucratic factors.

If we accept former American Vice President Al Gore’s history of climate change, the form of problem identification is even more remarkable. He asserts that the discovery of rising atmospheric CO2 concentrations by Roger Revelle in the 1960s, rather than of specific changes to the global climatic system directly, were what prompted the initial concern of some scientists and policy makers. This is akin to how the 1974 paper by Mario Molina and F.S. Rowland established the chemical basis for stratospheric ozone depletion by CFCs which, in turn, actually led to considerable action before their supposition was empirically confirmed. Gore’s characterization of the initial discovery of the climate change problem also offers glimpses into some of the heuristic mechanisms people use to evaluate key information, deciding which arguments, individuals, and organizations are trustworthy and then prioritizing ideas and actions.

Definition and initial implications

For the present moment, environmental ‘problems’ will be defined as being the consequences of unintentional (though not necessarily unanticipated) side effects of human activity in the world. While mining may release heavy metals into the natural environment, this didn’t crystallize in the minds of people as a problem until the harm they caused to human beings and other biological systems proved evident. While the empirical reality of heavy metal buildup may have preceded any human understanding of the issue, it could not really be understood as an environmental problem at that time. It only became so through the confluence of data about the world, a causal understanding between actions and outcomes, and moral judgments about what is right or desirable. Likewise, while lightning storms cause harm both to humans and other biological systems, their apparent status as an integral component of nature, rather than the product of human activities, makes them something other than an environmental problem as here described. Of course, if it were shown, for example, that climate change was increasing the frequency and severity of thunderstorms (a human behaviour causing an unwanted outcome, though a comprehensible causal link) then that additional damage could be understood as an environmental problem in the sense of the term here used.

Worth noting is the possibility of a dilemma between two sets of preferences and understandings: the alleviation of one environmental problem, for instance by regulating the usage of DDT, may reduce the scope to which another problem can be addressed, such as the possibility of increased prevalence of malaria in a warmer world. It is likewise entirely possible that different groups of people could ascribe different value judgments to the same empirical phenomena. For instance, ranchers and conservationists disagree about whether or not it is desirable to have wild wolves in the western United States.

Problem identification, investigation, and the formulation of understandings about the connections between human activity and the natural world do not comprise a linear progression. This is partially the product of how human psychological processes develop and maintain understandings about the world and partly the consequence of the nature of scientific investigation and political and moral deliberation. Existing understandings can be subjected to shocks caused by either new data or new ideas. Changed understandings in one area of inquiry can prompt the identification of possible problems in another. Finally, the processes and characteristics of problem investigation are conditioned by heuristic, political, and bureaucratic factors that will be discussed at greater length below.

Problematizing the origin of environmental problems as human understandings does not simply add complexity to the debate. It generates possibilities for a more rigorous understanding of the relationship between human beings and nature (including perceptions about why the two are so often seen as distinct). It also offers the possibility of dealing with dilemmas like the example above in a more informed and effective manner.