Secrecy and safety in complex technological systems

In Rhodes’ energy history I came across an interesting parallel with the 1988 STS-27 and 2003 STS-107 space shuttle missions, in which the national security payload and secrecy in the first mission may have prevented lessons from being learned which might have helped avert the subsequent disaster. Specifically, the STS-27 mission was launching a classified satellite for the US National Reconnaissance Office (NRO) and as a result they were only able to send low-quality encrypted images of the damage which had been sustained on launch to the shuttle’s thermal protective tiles. Since the seven crew members of STS-107 died because the shuttle broke up during re-entry due to a debris impact on the shuttle’s protective surfaces on launch, conceivably a fuller reckoning of STS-27 might have led to better procedures to identify and assess damage and to develop alternatives for shuttle crews in orbit in a vehicle that has sustained damage that might prevent safe re-entry.

Rhodes describes Belorussian leader and nuclear physicist Stanislav Shushkevich’s analysis of the Chernobyl disaster:

By Shushkevich’s reckoning, the Chernobyl accident was a failure of governance, not of technology. Had the Soviet Union’s nuclear power plants not been dual use, designed for producing military plutonium as well as civilian power and therefore secret, problems with one reactor might have been shared with managers at other reactor stations, leading to safety improvements such as those introduced into US reactors after the accident at Three Mile Island and the Japanese reactors after Fukushima.

Rhodes, Richard. Energy: A Human History. Simon & Schuster, 2018. p. 335

This seems like a promising parallel to draw in a screenplay about the STS-27 and STS-107 missions.

Leave a Reply

Your email address will not be published. Required fields are marked *