Batteries for large-scale energy storage

2011-01-08

in Economics, Geek stuff, Science, The environment

One challenge associated with renewable forms of energy like wind and solar power is that power stations of these types cannot usually produce energy all the time, and may not generate it at the time when it is needed most.

Energy storage is one mechanism for dealing with that, and can rely on various mechanisms like compressed air, pumped hydroelectric storage, and multi-lagoon tidal systems.

It is also encouraging that battery technology is improving. A company called Corvus now makes lithium ion batteries that consist of assemblies of 6.2 kilowatt-hour modules. These can be charged in 30 minutes and discharged in 6. They could be joined together in large arrays of up to 40 megawatt-hours and may eventually be cost-effective in some energy storage and load balancing roles.

Report a typo or inaccuracy

{ 3 comments… read them below or add one }

. May 14, 2012 at 8:23 pm

One product of these efforts is a new industrial battery. This began with research into making a battery tough enough to be used in a hybrid locomotive. A chemistry based on nickel and salt provided the required energy density and robustness. Yet making it work in the laboratory is one thing, commercialising the tricky processes involved to mass-produce the battery quite another. So GE sets up pilot production lines to learn how to put promising ideas into action before building a factory. Some ideas fail at this stage, others fly.

The battery is one that has taken off. Besides hybrid trains it is also suitable for other hybrid vehicles, such as fork lifts, as well as applications like providing back-up power for data centres and to power telecoms masts in remote places. It will be made in a new $100m facility near Niskayuna so that researchers are on hand to continue development. The battery itself consists of a set of standard cells which go into modules that can be connected together for different applications. The modules take up half the space of an equivalent lead-acid battery, are only about a quarter of the weight, will last for 20 years without servicing and work well in freezing or extremely hot conditions, says Glen Merfeld, in charge of energy-storage systems at GE’s laboratory.

. April 23, 2013 at 10:39 pm

The future of energy
Batteries included?
The search for better ways of storing electricity is hotting up

. December 21, 2013 at 9:44 pm

The researchers think they can produce a lithium-air battery with an energy density more than twice that of the best lithium-ion cells. That would make a lot of difference to portable electronic products. A typical lithium-ion battery can store some 150 watt-hours of electricity in one kilogram of battery—itself a huge advance over the 45-80 watt-hours of a nickel-cadmium battery, let alone an old-time lead-acid battery’s 30 watt-hours.

But there is some way to go. Lithium-air cells will have drawbacks too, such as a sensitivity to high temperature which can cause their lithium-ion cousins to burst into flames. So far, the researchers have successfully tested their viral material through 50 cycles of charging and recharging, which is encouraging but well short of the hundreds or thousands of cycles expected from a commercial battery. The MIT team could be on the right road, but more work is needed before lithium-air batteries can be used to drive an electric car two or three times farther on a single charge.

Leave a Comment

You can use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

{ 1 trackback }

Previous post:

Next post: